
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, MANUSCRIPT ID 1 

 

Show me How You Use Your Mouse and I Tell 
You How You Feel? Sensing Affect with the 

Computer Mouse 
Paul Freihaut and Anja S. Göritz 

Abstract— Computer mouse tracking is a simple and cost-efficient way to gather continuous behavioral data. As theory 
suggests a relationship between affect and sensorimotor processes, the computer mouse might be usable for affect sensing. 
However, the processes underlying a connection between mouse usage and affect are complex, hitherto empirical evidence is 
ambiguous, and the research area lacks longitudinal studies. The present work brings forward a longitudinal field study in which 
179 participants hourly self-reported their affect while their mouse usage was tracked both during their self-directed, contextless 
as well as task-bound computer use over the course of 14 days, resulting in a dataset comprising 10,760 instances of data 
collection. Extensive statistical analysis using null hypothesis significance testing and machine learning reveal weak and 
sporadic relationships between mouse usage and longitudinal self-reported affect at best. The results of this study challenge the 
immediate use of computer mouse tracking for longitudinal affect sensing and point to a necessity for more research. 

Index Terms— affective computing, affect, measurement, computer mouse, field study, nonverbal signals 

——————————   u   —————————— 

1 INTRODUCTION
HE computer mouse is a commonplace sensor in daily 
human-computer interaction. Tracking computer 

mouse usage conveniently and unobtrusively captures a 
rich stream of behavioral data without the need for sophis-
ticated equipment and without requiring the user to 
change their customary behavior [1]. It comes as a surprise 
that only recently researchers have begun to explore the 
potential of computer mouse usage data in more detail, 
mostly to elucidate cognitive processes [2], [3]. Originating 
in the idea of affective computing, the present study seeks 
to explore the feasibility of mouse tracking as a tool for af-
fect measurement. Leveraging the advantages of this sens-
ing approach, computer mouse tracking might provide a 
useful addition to established, but often more cumber-
some, methods of affect measurement [4], [5], and could 
contribute to practical applications as well as theoretical 
advances in the study of affect. 

2 LINKING THE USE OF THE COMPUTER MOUSE 
AND AFFECT 

Zimmermann and colleagues [6] first suggested the poten-
tial of mouse tracking in affective computing. Their ra-
tionale was that affect causes distinctive and observable 
patterns in the way a person interacts with the computer 
mouse. Despite the intuitive appeal to this rationale, un-
tangling the relationship between affect and mouse usage, 
however, is not straightforward, as the underlying pro-
cesses are complex [7], [8], [9], [10]. 

A typical mouse usage action, such as navigating to a 
button and clicking on it, represents a goal-directed 

sensorimotor action. Current research indicates a connec-
tion between these sensorimotor actions and affect [11]. 
Theories generally attribute this relationship to either cog-
nitive function or neuromotor pathways. The cognitive 
function pathway postulates that affect influences execu-
tive functions such as attentional control or working 
memory [12], [13], which are crucial in planning and con-
trolling of motor actions [14], [15], [16]. The neuromotor 
pathway postulates that affect influences neuromotor pro-
cesses such as corticospinal excitability [17], motor evoked 
potentials or muscle activity [18], which are crucial for mo-
tor actions. A growing body of studies support a relation-
ship between affect and different movement attributes, 
such as the speed, accuracy, and variability of motor ac-
tions during task execution [19], [20], [21], [22], [23]. How-
ever, there is little theory that directly links affect and 
mouse usage. Most previous studies in the research area 
are propped on intuition that mouse usage signals affect as 
well as on practical reasons. 

3 EMPIRICAL STUDIES ON THE USE OF THE 
COMPUTER MOUSE FOR AFFECT SENSING 

Despite the fact that Zimmerman et al.’s proposal [6] to use 
the mouse for affect measurement has been around for al-
most 20 years, the empirical evidence remains sparse. Al-
most all studies are cross-sectional laboratory experiments 
that include affect manipulation and standardized mouse 
usage tasks. The results of these studies do not lend them-
selves to clear interpretation. Most studies reported find-
ings in support of a relationship between affect and mouse 
usage, pointing out the potential of using mouse tracking 
for affect measurement (cf. [25], [26], [27], [28], [29]). How-
ever, there were also studies that did not identify a reliable 
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relationship (cf. [30], [31]). Adding to this inconsistency, 
some studies' small sample sizes and methodological limi-
tations, such as confounding affect manipulation and 
mouse usage tasks, further muddled the interpretability of 
results [25]. Freihaut and colleagues [31] further critiqued 
the scarcity of open science practices. Transparently shar-
ing data and data analysis code is crucial in this research 
area, because there is a lack of standardized methodologi-
cal approaches (e.g., mouse data can be processed in many 
ways), which promotes finding and reporting unreliable 
outcomes. 

Despite the capabilities of computer mouse tracking for 
continuous, long-term, and personalized data collection, 
longitudinal data remain by and large absent [1]. An ex-
ception being a field study that monitored mouse usage of 
70 employees during their regular computer use at work 
over seven weeks [26]. The study findings suggest that in 
a state of stress (i.e., negative valence and high arousal), 
participants move their mouse at a higher speed at the cost 
of a decrease in accuracy or vice-versa, that is, a speed-ac-
curacy trade-off, compared to a non-stress state. 

4 THE PRESENT STUDY 
The current state of research suggests a potential relation-
ship between affect and mouse usage. However, we also 
highlighted the need for further investigation given the 
complex underlying processes, the lack of a solid theoreti-
cal foundation, ambiguities in the empirical evidence, as 
well as an almost complete lack of longitudinal studies. 
Utilizing the computer mouse as a fingerprint of the user’s 
affect goes beyond finding sporadic significant relation-
ships. To serve as a diagnostic marker of affect, mouse us-
age needs to correspond to affect in reliable and predicta-
ble ways [32]. 

This study contributes to filling this research gap by of-
fering longitudinal data, as longitudinal research might be 
the most promising approach to study the feasibility of us-
ing computer mouse tracking in affective computing [32]. 
Our work is guided by the research question of whether 
there exists a systematic relationship between affect and 
mouse usage during everyday computer use. Moreover, 
we aim to address the proposed promise that mouse usage 
allows to reliably infer individuals' affect during their eve-
ryday computer use. 

In the study, we used ecological momentary assessment 
(EMA) to collect mouse usage data and self-reported affect 
from participants multiple times a day over two weeks. 
EMA offers assessment in people’s daily life [33, 34], which 
allows to evaluate the practical applicability of the meas-
urement approach. In contrast to previous studies, we cap-
tured mouse usage during both, participants contextless 
regular computer use, as well as during a standardized 
task. We conceptualized affect within the core affect model 
[35], delineating it into two dimensions: valence (posi-
tive/negative feelings) and arousal (levels of excitement or 
calmness). Participants' self-reported ratings served as the 
ground truth for their affective states. Importantly, we reg-
ularly prompted participants to rate their current affective 
state, thereby capturing their moment-to-moment feelings 

of positivity/negativity and excitement/calmness. Yet, 
these ratings also partially reflect a participant's trait affect, 
representing their usual affect level across different situa-
tions and over time [36]. Our longitudinal approach ena-
bles us to disentangle state affect from trait affect and to 
consider both independently [37]. 

The data analysis followed a data-driven exploratory 
approach as well as open-science principles. Conducting a 
transparent and systematic empirical evaluation may best 
catalyze theoretical advancements and methodological 
standardization in this field. 

5 METHOD 
5.1 Design 

The study was delivered via a “Study-App”, which par-
ticipants installed on their computer. Over 14 days, the app 
automatically initiated an instance of data collection once 
per hour. Each instance of data collection comprised three 
parts: (1) The Study-App discreetly tracked the position of 
the mouse cursor while the participant was engaged in 
their regular computer activities for a duration of five 
minutes (i.e., contextless mouse usage). (2) The Study-App 
prompted participants to complete a mouse usage task. (3) 
Participants were requested to report their current valence 
and arousal levels. 
The study intentionally avoided an active affect manipula-
tion as we aimed to capture natural variations in valence 
and arousal during everyday computer usage. 

5.2 Participants 
The study encompassed 179 participants who together 
completed a total of 10,760 instances of hourly data collec-
tion (per participant Mean = 60.11, SD = 40.09, Min = 0, 
Max = 224). This entails participants completing the mouse 
task, rating their valence and arousal, and having their self-
directed mouse usage recorded. Participants were in part 
recruited via social media and word-of-mouth (conven-
ience sample, n = 44), and in part via WisoPanel (panel 
sample, n = 135), an online access panel with participants 
from all walks of life [38], [39]. Table 1 shows sociodemo-
graphics. In the convenience sample, a higher percentage 
of participants are in the younger age groups. Given the 
proof-of-concept nature of this study, we decided to collaps 
the two samples. The number of participants in each age 
group is reasonably balanced in the combined dataset. 

As part of an independent inquiry into the effect of re-
muneration on study participation, invited panel partici-
pants (N = 990) were randomly offered either 5€, 10€ or no 
remuneration for their participation. The convenience 
sample did not receive any remuneration. The two samples 
as well as the variation of remuneration were deemed to 
enhance the robustness of the present study’s results. 

Participation required the use of a physical computer 
mouse. Individuals who primarily used a trackpad, touch 
or another non-mouse computer input device were re-
quested to abstain from participating. The app was availa-
ble for Windows 10 (91.6%) and MacOS (8.4%). 
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5.3 Measures 

5.3.1 Contextless Mouse Usage 
In the initial part of each instance of data collection, the 
Study-App recorded a participant’s self-directed mouse 
usage behavior during their regular computer use during 
a 5 min interval. The purpose of this was to capture a snap-
shot of the participant's natural and unconstrained mouse 
behavior. 

The recording of contextless mouse data was time-
based. The mouse cursor’s x- and y-position were logged 
on the entire computer screen along with a timestamp at a 
sampling rate of 50 Hz (i.e., one datapoint every 20 ms). As 
a result, a five-minute segment of recorded mouse use 
yielded up to 15,000 raw cursor position data points. The 
sampling frequency was chosen as a compromise between 
sampling accuracy and size of the recorded dataset. More-
over, the sampling rate is similar to the event-based sam-
pling approach, which was used to capture task-specific 
mouse usage. The recording ended once the participant 
commenced the subsequent mouse-usage task. Fig. 2 
shows an example of the contextless mouse data. 

5.3.2 Task-Specific Mouse Usage 
The second phase of each data collection instance was a 
simple point-and-click task (Fig. 1). Participants were pre-
sented with a 4-by-4 grid of solid circles and instructed to 
click on 7 out of the 16 circles in a specified sequence. The 
first circle to be clicked was highlighted. Upon being 
clicked, the circle was marked as 'clicked' and the next cir-
cle in the sequence was highlighted. This continued until 
all 7 circles had been clicked. The goal of the point-and-
click task was to track participants mouse usage in a stand-
ardized way during a prototypical mouse usage task [29]. 
To limit task habituation, the click sequence for each in-
stance of the task was randomly selected from a prepared 
set of 25 sequences. 

During the task, the app logged all mouse usage behav-
ior inside the app’s task window. Data were collected in an 
event-based manner, meaning a data point was generated 
each time a mouse event (i.e., positional change or click) 
occurred. The sampling rate of continuous mouse move-
ment was around 50 Hz. Each data point consisted of the 
name of the mouse event, the cursor’s x/y position in the 
task window, a timestamp and the number of circles 
clicked so far. The median count of collected raw mouse 
usage datapoints in the point-and-click task was 235. 

5.3.3 Affect Measurement 
Participants reported their affect through two questions 
pertaining to their current feelings of valence (ranging 
from negative to positive) and arousal (ranging from ex-
cited to calm). The responses were captured using a slider 
scale that ranged from 0 to 100, with the default position 
set at 50. Valence and arousal are common measures of af-
fect, for example, via the SAM [40]. By limiting affect as-
sessment to two questions per data collection, we tried to 
minimize the burden placed on participants. Single item 
measurements have shown acceptable predictive validity 
as compared to multiple-item measures, which make them 
especially attractive in intensive longitudinal designs [41]. 
We did not ask participants directly about potential exter-
nal factors that might influence affect, such as caffeine us-
age. However, we logged the time of the day and date of 
each measurement. 

5.4 Procedure 
The Study-App automatically handled the study proce-
dure without the need for intervention either by 

 
Fig. 2. Point-and-click task. The left panel shows the beginning and the 
middle panel shows the ending of the point-and-click task. The right-
hand panel shows an example of the logged mouse usage data during 
the task. The dots alongside the mouse movement path represent the 
recorded x- and y-positions on the screen. The colors mark movement 
episodes (i.e., the mouse movement between consecutive circles shown 
in the middle panel). 

TABLE 1 
Sample Sociodemographics 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Example of recorded mouse movement during the 5-min context-
less computer use interval. The dots represent the recorded x- and y-
positions on the screen. The colors mark individual movement episodes. 
Movement episodes are delimited by pauses exceeding a specified 
threshold (e.g., 1 sec). 

 Total Sample  Panel Sample  Conv. Sample 
 N %  N %  N % 
Age       

< 30 41 22.9  10 7.4  31 70.5 
30 – 39 26 14.5  18 13.3  8 18.2 
40 – 49 31 17.3  29 21.5  2 4.5 
50 – 59 33 18.4  31 23.0  2 4.5 

>= 60 38 21.3  38 28.1  0 0.0 
Not reported 10 5.6  9 6.7  1 2.3 

Gender       
Male 94 52.5  72 53.3  22 50.0 

Female 83 46.4  61 47.4  22 50.0 
Not reported 2 1.1  2 1.5  0 0.0 

Hand to use the mouse       
Right 170 95.0  127 94.1  43 97.7 

Left 8 4.5  7 5.2  1 2.3 
Not reported 1 0.5  1 0.7  0 0.0 

Study remuneration       
0€ 74 41.34  30 22.2  44 100.0 
5€ 45 25.14  45 33.3  0 0.0 

10€ 60 33.52  60 44.4  0 0.0 
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participants or the experimenter, thus ensuring an objec-
tive data collection process. Before the start of the data col-
lection, participants had to complete an introductory tuto-
rial. The study ended 14 days after the start of the data col-
lection (see Supplement 1 for details).  After each data col-
lection instance, all collected data were anonymously 
saved in a database. No data were saved when participants 
aborted or opted to skip a data collection instance. 

The app window was square-shaped, with its height 
and width set to 80% of the available screen height. It ap-
peared in the center of the primary computer screen. Par-
ticipants could not resize the app window, but they were 
able to change the position of the window by dragging it. 
The app was programmed with Electron.js and used Re-
act.js for building the user interface. 

5.5 Data Analysis 
Recall that the study dataset contained 10,760 instances of 
data collections from 179 participants. Each data collection 
instance included contextless mouse data, contextual 
mouse-task data, and self-reported affect ratings. This al-
lowed us to independently explore the relationship be-
tween affect and mouse usage in both contexts. The data 
analysis procedure entailed two steps: preprocessing the 
mouse usage data followed by statistical analysis. An illus-
tration of this process is provided in Figure 3. 

5.5.1 Data Preprocessing 
5.5.1.2 Contextless Mouse Data: It involved three pre-

processing stages (details in Supplement 2): 
1) Data quality inspection: The raw data were vetted 

for quality, with each data collection instance ex-
pected to contain up to 15,000 mouse cursor posi-
tion data points. Seventeen instances with recording 
errors were removed, as were the data of 9 partici-
pants with less than 3 valid data collections. The re-
fined dataset included 10,735 data collections from 
170 participants (Mean = 63.14, Median = 59; SD = 
38.59, Min = 7, Max = 224). 

2) Feature creation: The raw data were transformed 
into discrete mouse usage features. In line with the 
procedure in [26], the dataset was divided into peri-
ods of mouse movement and non-movement. A 
movement period commenced with a change in 
mouse position and ended when no positional 

changes were detected for a specified threshold. To 
account for the lack of a generally agree-upon 
threshold, we created three datasets based on 
thresholds of 1 sec, 2 sec, and 3 sec. For each pause 
threshold dataset, we calculated 31 spatial and tem-
poral mouse usage features in accordance with the 
mouse tracking literature and available mouse data 
processing software [42], [3]. See Table 2 for an over-
view of the features, for details see the supplement. 

3) Feature reduction: Highly correlated mouse usage 
features (r > .8) were removed from each dataset to 
decrease redundancy. 

Following preprocessing, we obtained three distinct 
contextless mouse datasets: D1-sec-pause-thresh, D2-sec-pause-thresh, 
and D3-sec-pause-thresh. Independently analyzing each dataset 
represents a multiverse analysis, which benefits robustness 
and transparency [43]. Notwithstanding, given the virtu-
ally limitless alternatives in data preprocessing, our 
choices were ultimately a compromise between exploring 
various reasonable preprocessing scenarios and managing 
computational demands and result complexity. 

5.5.1.1 Mouse-Task Data: It involved five prepro-
cessing stages (details in Supplement 3):  

1) Data quality inspection: The raw data were vetted 
for quality, with each data collection instance con-
taining a median of 235 raw data points. Twenty-
two instances with recording errors were removed, 
as were the data of 10 participants with less than 3 
valid data collections. The refined dataset included 
10,729 data collections from 169 participants (Mean 
= 63.49, Median = 60; SD = 38.60, Min = 7, Max = 
224). 

2) Feature creation: The raw data were transformed 
into 41 spatial and temporal mouse usage features. 
See Table 2 for an overview of the features, for de-
tails see the supplement. 

3) Outlier removal: The mouse usage features were 
checked for anomalies (e.g., random mouse move-
ments instead of straight paths between click 
points). Given the absence of a agreed-upon proce-
dure to identify careless responders, and careless re-
sponding might carry information about affect, we 
created three datasets with different outlier removal 
procedures. In the first dataset, we removed two 
cases with a task duration exceeding 15 min 

TABLE 2 
Summary of the Mouse-Usage Features 

 

 

 

 

 

 

 

  
Feature Category Description 
Contexless Mouse-Usage Features 

Speed 
(12 features) Describe average and variation in mouse speed, acceleration and jerk during mouse movement episodes 

Distance & Accuracy 
(11 features) 

Describe average and variation in mouse distance, directional changes and angles between consecutive mouse movement vectors during the mouse 
movement episodes 

Duration 
(4 features) Describe average and variation in the movement episode duration and the time of no movement 

Other 
(4 features) Describe the number of movement episodes, total recording time, number of lockscreen episodes and lockscreen time 

Mouse-Task Features 
Speed 

(18 features) Describe average and variation in speed, acceleration and jerk of during the mouse task as well as during the mouse task trials 

Distance & Accuracy 
(17 features) 

Describe average and variation in mouse distance, directional changes, angles between consecutive mouse movement vectors, and the distance from an 
ideal task movement during the mouse task as well as during the mouse task trials 

Duration & Reaction time 
(5 features) 

Describe average and variation in the duration of the mouse task trials and the reaction time in each mouse task trial, which is the time difference between 
the start of a trial and the first movement towards the target 

Clicks 
(1 feature) Describe the number of mouse clicks during the mouse task 
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(median task duration = 6.97 sec). In the second and 
third dataset, we removed outliers using the inter-
quartile range (IQR) method with thresholds of 2.5 
and 3.5. 

4) Click order harmonization: Potential systematic dif-
ferences in mouse usage features between task click 
orders were harmonized using linear equating [44]. 

5) Feature reduction: Highly correlated features (r > .8) 
were removed from each dataset. 

Following preprocessing, we obtained three distinct 
mouse-task datasets: Ddur.-cutoff, DIQR-2.5, and DIQR-3.5. Again, 
the data preprocessing steps highlight the researcher de-
grees of freedom when working with mouse usage data, 
and the selected datasets do not cover all possible prepro-
cessing options. 

5.5.2 Statistical Analysis 
Our analysis aimed to explore the bivariate relationship be-
tween mouse usage and affect (valence and arousal) and 
assess the feasibility of reliably inferring affect from mouse 
movements during everyday computer use. Two analytical 
approaches have commonly been employed in similar re-
search: 

1) Null hypothesis significance testing (NHST): NHST 
enables population inferences about the links be-
tween mouse usage features and affect. For in-
stance, [26] used Bayesian mixed-model logistic re-
gression to test if stress is characterized by a speed-
accuracy trade-off in mouse movements. 

2) Machine Learning (ML): ML tests if mouse usage 
successfully predicts affect. For instance, [25] uti-
lized random forest regression to predict varying 
feeling states from 16 mouse usage features.  

Both data analysis approaches offer unique ad-
vantages: NHST helps to uncover the underlying processes 
of the relationship between affect and mouse usage behav-
ior, while ML helps to evaluate the reliability of affect pre-
diction from mouse usage [45]. To support multifinality, 
our exploratory data analysis included both, NHST as well 
as ML. 

Note that our exploratory research approach allows 
building and testing an infinite number of statistical mod-
els (e.g., testing interaction effects between mouse usage 
features). Given the emerging state of this research area, we 
focused on relatively simple models of the relationship be-
tween mouse usage and affect. This approach best ad-
dresses the fundamental proposal that mouse usage and 
affect are reliably related, while also managing the com-
plexity of the statistical analysis. Both the NHST and ML 
were implemented similarly for testing the relationship be-
tween contextless mouse usage and affect as well as be-
tween contextual mouse-task mouse usage and affect. 

5.5.2.1 NHST Analysis: We used linear mixed models 
to test the relationship between single mouse usage fea-
tures (independent variable) and affect (valence or arousal 
– dependent variable). For each affect measure and mouse 
usage feature, we compared three models. 

Null model: The model included a random intercept for 
each participant, but no predictor variable. The null 
model`s intraclass correlation (ICC) informs on how much 
variance in the outcome variable is due to variation be-
tween persons (i.e., individual differences in the average 
affect across the measurements; trait affect) and variation 
within persons (i.e., measurement-specific deviations in af-
fect from one’s usual level; state affect). The null model 
also serves as a baseline to assess how much additional in-
formation each mouse usage features provides. Formally, 
the null model is defined as 

 
𝐴!" = 𝛽# + 𝛽#! +	𝜀!"    (1) 

 
where participant i’s affect (valence or arousal) at meas-

urement j, 𝐴!", is a function of the overall intercept, 𝛽#, par-
ticipant-specific variation in the intercept, 𝛽#!, and error, 
𝜀!". 

Fixed effect model: We added one mouse usage feature 
into the model as a fixed effect predictor. Like affect, mouse 
usage data contain both, between-person variation (i.e., 
trait mouse usage) and within-person variation (i.e., state 
mouse usage). Each source of variation can exert its own 

 

 

 

 

 

 

 

 

 

Fig 3. Overview of the study procedure and data preprocessing. In the machine learning analysis; *steps were conducted using the training 
dataset only on the test dataset. 
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effect on the outcome [37]. The between-person effect rep-
resents a trait effect, and the within-person effect repre-
sents a state effect. We included both sources of variance 
into the model by splitting the mouse usage predictor into 
a between-person (trait) and a within-person (state) pre-
dictor using person-mean-centering [37]: 

 
𝑇𝑟𝑎𝑖𝑡	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟:𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒$%&!'! = 𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒(666666666666666666666      (2) 
𝑆𝑡𝑎𝑡𝑒	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟:𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒)'&'*!" = 

𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒!" −	𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒(666666666666666666666  (3) 
 

where 𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒!"	is the participant i’s mouse us-
age feature at measurement j, and 𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒(..................... is partic-
ipant i’s mean mouse usage feature. Formally, the fixed ef-
fect model is defined as 

 
	𝐴!" = 	𝛽# + 𝛽+𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒$%&!'! +   

	𝛽,𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑆𝑡𝑎𝑡𝑒!" + 	𝛽#! + 𝜀!"  (4) 
 

where participant i’s affect (valence or arousal) at meas-
urement j, 𝐴!", is a function of the overall intercept, 𝛽#, the 
fixed slope parameter of the trait mouse usage feature, 𝛽+, 
the fixed slope parameter of the state mouse usage feature, 
𝛽,, participant-specific variation in the intercept, 𝛽#!, and 
error, 𝜀!". 

Random slope model: We allowed the state effect of 
mouse usage on affect to vary between participants (i.e., a 
random slope). The random-slope model considers poten-
tial participant-specific relationships between affect and 
the mouse usage feature (e.g., an increase in arousal might 
be associated with an increase in mouse speed for some 
participants, but with a decrease in mouse speed for other 
participants). The random slope model is defined as 

 
		𝐴!" = 𝛽# + 𝛽+𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒$%&!'! +   

	𝛽,𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒)'&'*!" +	𝛽-!𝑀𝑜𝑢𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒)'&'*!" 
+	𝛽#! + 𝜀!"    (5) 

 
where participant i’s affect (valence or arousal) at meas-

urement j, 𝐴!", is a function of the overall intercept, 𝛽#, the 
fixed slope parameter of the trait mouse usage feature, 𝛽+, 
the fixed slope parameter of the state mouse usage feature, 
𝛽,, the participant-specific slope parameter of the state 
mouse usage feature, 𝛽-!, participant-specific variation in 
the intercept, 𝛽#!, and error, 𝜀!". 

Considering that linear mixed models assume nor-
mally distributed residuals [46] and that neither the out-
come variables nor most mouse usage features follow a 
normal distribution, we used rank-based inverse normali-
zation [47] to transform these variables before their inclu-
sion in the models. We estimated all models using maxi-
mum likelihood. 

5.5.2.2 ML Analysis: We used random forest regression 
to test if affect (valence or arousal as either outcome varia-
ble) can be predicted from mouse usage (all mouse usage 
features of a dataset as input features). For each affect 
measure, we compared two ML models: 

Null model: The model included a single input feature: 
the Participant ID number to predict affect. The inclusion 
of the Participant ID is akin to assigning each participant a 

unique intercept, hence the model predicts each individ-
ual’s average affect level (i.e., the model accounts for the 
trait variance of affect). The null model serves as a baseline 
to later assess how much additional predictive information 
the mouse usage features provide. 

Full model: The model included all mouse usage fea-
tures as input features, along with the Participant ID. For 
both models, we trained them using the chronologically 
first 80% of each participant`s data (training dataset) and 
tested their performance on the remaining 20% data of 
each participant`s data (test dataset). This mimics the po-
tential use case of personalized affect prediction. We chose 
the random forest algorithm because it has proven effec-
tive with mouse usage data in previous studies (c.f. [48], 
[28], [25]). The hyperparameters of the random forest were 
tuned with randomized grid search in a 5-fold cross vali-
dation loop [49]. To gain insight into each input feature’s 
influence on the prediction performance, we computed 
permutational feature importance scores [50]. 

6 RESULTS 
We explored the relationship between affect and mouse 
usage in two contexts: during user-directed, contextless 
computer use and during a standardized, contextual 
mouse task. We transformed either raw data set—
contextless mouse data and mouse-task data—into three 
distinct datasets and conducted analysis using both 
NHST and ML. Due to limited journal space and for the 
sake of clarity, this section focuses only on the crucial 
results. For a comprehensive review of all results, please 
refer to Supplements 4 (contextless mouse usage results) 
and 5 (mouse-task results). 

6.1 Descriptive Statistics of Valence and Arousal 
Across all data collection instances, participants reported 
their valence as more positive than negative (mean = 69.87, 
std = 23.26, range = 0 - 100 and their arousal as more calm 
than excited (mean = 69.28, std = 23.93, range = 0 - 100). 
The average within-participant standard deviations were 
12.76 for valence and 15.12 for arousal. The distribution of 
valence and arousal responses is in Figure 4. 

 
Fig. 4. Valence and arousal ratings across all instances of data collec-
tion. The scatterplot shows the individual ratings. The kernel density es-
timation (KDE) plot provides a smoothed representation of the data den-
sity, highlighting areas of higher and lower concentration of ratings. 
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6.2 Contextless Mouse Usage Results 
Recall that there are three distinct datasets for contextless 
mouse usage, each representing a different movement 
pause threshold to distinguish between mouse movement 
and non-movement episodes: D1-sec-pause-thresh, D2-sec-pause-thresh, 
and D3-sec-pause-thresh. All analysis were independently run for 
each dataset. 

6.2.1 NHST Results 
We compared three linear mixed models: (1) A null model 
with a random intercept, (2) a fixed effect model, which in-
cludes both the state and trait components of an individual 
mouse usage feature as fixed effects, and (3) a random 
slope model, which also includes the random slope for the 
state mouse usage feature. Our primary criterion for model 
evaluation was explanatory power. Specifically, we com-
puted marginal R² (R²-marg), conditional R² (R²-cond), and 
cumulative R² (R²-cum). R²-marg quantifies the explana-
tory power of the fixed effects. R²-cond quantifies the ex-
planatory power of both, the fixed effects and the random 
effects, that is, the total model [51]. R²-cum quantifies the 
explanatory power as the square of the correlation between 
the model`s predicted outcome and the observed outcome 
[37]. There were 16 mouse usage features in D1-sec-pause-thresh, 
14 features in D2-sec-pause-thresh, and 15 features in D3-sec-pause-thresh. 
We applied the Benjamini-Hochburg procedure to control 
the false discovery rate due to multiple testing [52]. 

Null model results: We computed a null model for each 
dataset and outcome variable. The average model Intra-
class Correlation (ICC) indicates that 56% of the variance 
in arousal and 64% of the variance in valence was due to 
between-person mean differences (trait affect), while 44% 
and 37% of the variance was attributed to within-person 
variations (state affect).  

Fixed effect model results: We computed a fixed effect 
model for each mouse usage feature in each dataset. This 
totaled 45 fixed effect models per outcome variable. Com-
pared to the null model, 11 models (24%) for arousal and 
18 models (40%) for valence had a significantly better fit. 
The average increase in explanatory power of all models 
compared to the null model was small: For arousal, there 
was an average increase of 0.00010 for R2-cond (max = 
0.0026), 0.015 for R2-marg (max = 0.056), and 0.0000061 for 

R²-cum (max = 0.00047). For valence, there was an average 
increase of 0.00013 for R²-cond (max = 0.0022), 0.018 for R²-
marg (max = 0.069), and 0.000029 for R²-cum (max = 
0.00026). 

Random slope model results: We computed a random 
slope model for each mouse usage feature in each dataset. 
This totaled 45 random slope models per outcome variable. 
Compared to the fixed effect model, 26 models (58%) for 
arousal and 31 models (69%) for valence had a significantly 
better fit. On average, the random slope models showed a 
slight increase in explanatory power as compared to the 
fixed effect models. However, the absolute explanatory 
power of all random slope models was small. For arousal, 
there was an average increase of 0.0027 for R²-cond (max = 
0.0061), 0.00042 for R²-marg (max = 0.0043), and 0.0038 for 
R²-cum (max = 0.0081). For valence, the average increase 
was 0.0024 for R²-cond (max = 0.0055), 0.00042 for R²-marg 
(max = 0.0025), and 0.0038 for R²-cum (max = 0.0075).  

6.2.2 Machine Learning Results 
We compared two models: (1) a null model using the 

Participant ID as sole predictor, analogous to the random 
intercept model in the mixed model analysis, and (2) a full 
model, incorporating all mouse features alongside the Par-
ticipant ID. To evaluate the models' predictive perfor-
mance, we computed the coefficient of determination (R²), 
mean squared error (MSE), and mean absolute error 
(MAE) between the predicted and observed outcome val-
ues in the test dataset. Training and testing data sizes re-
mained consistent across all three datasets at Ntrain = 8,524 
and Ntest = 2,211, respectively. D1-sec-pause-thresh had 15 mouse 
usage features, D2-sec-pause-thresh had 12 features, and D3-sec-pause-

thresh had 13 features. Note that the number of features var-
ies between the NHST and ML analyses datasets, because 
in the ML analysis, to prevent data leakage into the test 
data the feature reduction was done using the training data 
only. 

For arousal, null models displayed an average R² of .52, 
an MSE of 276.73, and an MAE of 11.49. The full model saw 
a decrease in average R² to .44 and increases in MSE to 
328.56 and MAE to 13.47. The Participant ID emerged as 
the most important feature. 

TABLE 3 
Contextless Mouse Usage NHST Analysis Result Summary 

 
 
 
 
 
 
Note. The table shows the average and maximum model explanatory power of the linear mixed effect models that were 
calculated for each mouse usage feature in each of the three datasets. The null model is a random intercept only model. 
The FE-models included the mouse usage feature as a fixed effect. The RS-models included the mouse usage feature as a 
fixed effect and as a random slope. R2-cond (conditional R2) quantifies the explanatory power of both, the fixed effects and 
the random effects. R²-marg (marginal R2) quantifies the explanatory power of the fixed effects. R²-cum (cumulative R2) 
quantifies the explanatory power as the square of the correlation between the model`s predicted outcome and the observed 
outcome. 

 

 

 

 

 

 

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

Valence 1s pause thresh 10735 16 0.645 0.000 0.640 0.645 0.647 0.020 0.069 0.640 0.640 0.647 0.650 0.020 0.071 0.644 0.647
2s pause thresh 10735 14 0.645 0.000 0.640 0.645 0.647 0.018 0.055 0.640 0.640 0.647 0.651 0.018 0.056 0.644 0.647
3s pause thresh 10735 15 0.645 0.000 0.640 0.645 0.647 0.017 0.058 0.640 0.640 0.647 0.651 0.017 0.057 0.644 0.648

Arousal 1s pause thresh 10735 16 0.561 0.000 0.565 0.561 0.564 0.016 0.056 0.565 0.566 0.564 0.569 0.017 0.060 0.569 0.573
2s pause thresh 10735 14 0.561 0.000 0.565 0.561 0.563 0.014 0.042 0.565 0.566 0.564 0.569 0.016 0.045 0.569 0.573
3s pause thresh 10735 15 0.561 0.000 0.565 0.561 0.563 0.014 0.044 0.565 0.566 0.564 0.568 0.014 0.045 0.570 0.574

Outcome Dataset
Dataset Characteristics Null Model

R²-marg R²-cum
RS Model

N # Features R²-cond R²-marg R²-cum R²-cond R²-marg R²-cum R²-cond
FE Model
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For valence, the null model displayed an average R² of 
.58, an MSE of 219.07, and MAE of 9.5. The full model saw 
a decrease in R² to .47, an increase in MSE to 275.69 and 
MAE to 12.00. Again, the Participant ID was the most im-
portant feature. 

6.3 Mouse-Task Results 
Recall that there are three distinct mouse-task datasets, 
each representing a different outlier removal procedure: 
Ddur.-cutoff, DIQR-2.5, and DIQR-3.5. All analyses were inde-
pendently run for each dataset. 

6.3.1 NHST Results 
The NHST analysis of the mouse-task data mirrored the 
procedure employed with the contextless mouse data. We 
compared (1) a null model, (2) a fixed effect model and (3) 
a random slope model. The primary evaluation criterion 
was the model's exploratory power. Ddur--curoff had N = 
10,272 observations and 21 mouse usage features, DIQR-2.5 

had N = 8,761 observations and 22 mouse usage features, 
and DIQR-3.5 had N = 9,526 observations and 20 mouse usage 
features. The false discovery rate was controlled with all 
significance tests. 

Null model results: We computed a null model for each 
dataset and outcome variable. The ICC revealed that 56% 
of the arousal variance and 64% of the valence variance 
were due to between-person mean differences (trait affect). 
The within-person variation accounted for 44% of the 
arousal variance and 37% of the valence variance (state af-
fect). 

Fixed effect model results: We computed a fixed effect 
model for each mouse usage feature in every dataset, 

totaling 63 fixed effect models per outcome variable. In re-
lation to the null model, 35 models (56%) for arousal 
showed a significantly superior fit. However, none of the 
models for valence demonstrated a significantly better fit 
compared to the null model. The average increase in ex-
planatory power of all models compared to the null model 
was minor or even negative. For arousal, there was an av-
erage increase of 0.00014 for R²-cond (max = 0.0011), 0.010 
for R²-marg (max = 0.034), and 0.00040 for R²-cum (max = 
0.0015). For valence, there was an average decrease of 
0.0015 for R²-cond (max = 0.00026), an average increase of 
0.0067 for R²-marg (max = 0.036), and an average increase 
of 0.00006 for R²-cum (max = 0.00021). 

Random slope model results: We computed a random slope 
model for each mouse feature in every dataset, which re-
sulted in 63 random slope models per outcome variable. 
Compared to the fixed effect model, 30 models (48%) for 
arousal and 25 models (40%) for valence demonstrated a 
significantly superior fit. On average, the random slope 
models showed a slight increase in explanatory power as 
compared to the fixed effect models. However, the absolute 
explanatory power of all random slope models was small: 
For arousal, there was an average increase of 0.0026 for R²-
cond (max = 0.0064), 0.00030 for R²-marg (max = 0.0025), 
and 0.0034 for R²-cum (max = 0.010). For valence, the aver-
age increase was 0.0016 for R²-cond (max = 0.0051), 
0.000097 for R²-marg (max = 0.0031), and 0.0075 for R²-cum 
(max = 0.0075). 

6.3.2 Machine Learning Results 
The ML analysis of the mouse-task data mirrored the 

contextless mouse usage ML analysis. We compared (1) a 
TABLE 5 

Mouse Task NHST Analysis Result Summary 

 
 
 
 
 
 
Note. The table shows the average and maximum model explanatory power of the linear mixed effect models that were 
calculated for each mouse usage feature in each of the three datasets. The null model is a random intercept only model. 
The FE-models included the mouse usage feature as a fixed effect. The RS-models included the mouse usage feature as a 
fixed effect and as a random slope. R2-cond (conditional R2) quantifies the explanatory power of both, the fixed effects and 
the random effects. R²-marg (marginal R2) quantifies the explanatory power of the fixed effects. R²-cum (cumulative R2) 
quantifies the explanatory power as the square of the correlation between the model`s predicted outcome and the observed 
outcome. 

 

TABLE 4 
Contextless Mouse Usage Machine Learning Analysis Result Summary 

 

 

 

 
 
 
Note. MSE = Mean Squared Error, MAE = Mean Absolute Error. 
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Contextless Mouse Usage Machine Learning Analysis Result Summary 

 

 

 

 
 
Note. MSE = Mean Squared Error, MAE = Mean Absolute Error. 

 

Table 3 
Contextless Mouse Usage Machine Learning Analysis Result Summary 

 

 

 

 
 
Note. MSE = Mean Squared Error, MAE = Mean Absolute Error. 

 

N-train N-test # Features R² MSE MAE R² MSE MAE

Valence 1s pause thresh 8524 2211 16 0.58 218.82 9.57 0.46 281.61 12.23

2s pause thresh 8524 2211 13 0.58 219.48 9.58 0.47 273.54 11.94

3s pause thresh 8524 2211 14 0.58 218.91 9.57 0.47 271.93 11.82

Arousal 1s pause thresh 8524 2211 16 0.52 276.92 11.49 0.43 333.80 13.72

2s pause thresh 8524 2211 13 0.52 276.51 11.48 0.44 327.16 13.35

3s pause thresh 8524 2211 14 0.52 276.77 11.48 0.44 324.71 13.35

Null Model Full ModelOutcome Dataset Dataset Characteristics

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

Valence Dur. Cutoff 10272 21 0.645 0.000 0.640 0.644 0.644 0.007 0.034 0.640 0.640 0.645 0.649 0.007 0.037 0.643 0.647

IQR 2.5 8761 22 0.645 0.000 0.640 0.641 0.642 0.006 0.033 0.634 0.635 0.643 0.645 0.005 0.020 0.637 0.639

IQR 3.5 9526 20 0.645 0.000 0.640 0.645 0.646 0.007 0.035 0.637 0.637 0.647 0.648 0.006 0.018 0.639 0.642

Arousal Dur. Cutoff 10272 21 0.559 0.000 0.565 0.559 0.560 0.010 0.023 0.565 0.566 0.562 0.566 0.010 0.023 0.569 0.576

IQR 2.5 8761 22 0.554 0.000 0.555 0.554 0.555 0.010 0.034 0.556 0.557 0.557 0.561 0.008 0.018 0.559 0.565

IQR 3.5 9526 20 0.558 0.000 0.559 0.558 0.559 0.010 0.027 0.560 0.560 0.560 0.565 0.010 0.027 0.563 0.569

FE Model RS Model

R²-cond R²-marg R²-cum R²-cond R²-marg R²-cum
R²-cumN # Features

Outcome Dataset
R²-cond R²-marg

Dataset Characteristics Null Model
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null model using the Participant ID as sole predictor, and 
(2) a full model, incorporating all mouse usage features 
alongside the Participant ID. Model performance was eval-
uated using R², MSE, and MAE. Ddur.-cutoff was split into Ntrain 
= 8,520 observations and Ntest = 2,207 observations and had 
22 mouse features. DIQR-2.5 was split into Ntrain = 6,960 obser-
vations and Ntest = 1,784 observations and had 23 features. 
DIQR-3.5 was split into Ntrain = 7,573 observations and Ntest = 
1,955 observations and had 22 features. 

For arousal, the null models had an average R² of .52, an 
MSE of 279.47, and an MAE of 11.52. The full model saw a 
decrease in R² to .44 and increases in MSE to 323.28 and 
MAE to 13.44. The participant ID emerged as the most im-
portant feature. 

For valence, the null model had an average R² of .60, an 
MSE of 221.94, and an MAE of 9.60. The full model saw a 
decrease in R² to .50 and increases in MSE to 257.11 and 
MAE to 11.28. Again, the participant ID was the most im-
portant feature. 

7 DISCUSSION 
The computer mouse is a promising affect sensing ap-

proach, because it conveniently produces a rich stream of 
continuous behavioral data. This study explored the rela-
tionship between mouse usage and affect in a longitudinal 
field setting. Spanning 14 days, we hourly tracked mouse 
usage during participants’ self-directed, contextless com-
puter use as well as during a standardized, contextual 
mouse task. As ground truth of affect, participants rated 
their current feeling state’s valence and arousal. 

The interpretation of the results is complex, which is not 
unexpected considering the numerous statistical tests con-
ducted. In the NHST analysis, there were tentative findings 
in support of a relationship between mouse usage and af-
fect with both, the contextless mouse data and the mouse-
task data. Several fixed effect models offered a significantly 
better fit than the null model, also after applying false dis-
covery rate control. Furthermore, random slope models of-
ten fit better than the fixed effect models, implying poten-
tial person-specific relationships between mouse usage 
and affect. However, the incremental explanatory power 
across all non-null models over the null model was mini-
mal, indicating a practically negligible correlation between 
mouse usage and affect. The machine learning results un-
derscore this observation. The inclusion of mouse usage 
features in the ML models did not enhance affect 

prediction, but decreased prediction performance as com-
pared to the null model. This decrease is likely due to over-
fitting on random noise arising from the inclusion of addi-
tional, non-informative input features. 

Given this pattern of findings we refrain from high-
lighting specific mouse usage features as potential indica-
tors of affect. However, we encourage further investigation 
of tentatively promising individual features outlined in the 
supplemental files. The pattern suggests that if mouse us-
age can indeed be a reliable indicator of affect, arousal 
might be more predictable than valence. Moreover, track-
ing mouse usage in standardized tasks might be more ef-
fective in predicting affect than tracking contextless mouse 
usage. In the mouse task, affect appeared more strongly 
correlated with state than with trait mouse features. By 
contrast, in contextless mouse usage, trait mouse features 
held a stronger correlation with affect than state mouse fea-
tures. Nevertheless, the relationship between mouse usage 
and affect was, at best, marginal, regardless of whether 
mouse usage was contextless or contextualized. 

Addressing the research questions of this study, our 
findings indicate a limited and uncertain link between 
mouse usage and affect. At this stage, it is premature to as-
sert that everyday computer mouse usage can reliably pre-
dict individuals' affect. As such, the potential of the com-
puter mouse as a tool in affect sensing should be regarded 
with skepticism [30], [31]. Such skepticism might be partic-
ularly pertinent in naturalistic settings. Promising results 
from laboratory settings do not necessarily translate into 
real-life settings [32]. For example, a recent study shows 
that heart rate variability (HRV), despite its effectiveness in 
lab settings, showed little predictive value for self-reported 
stress in an everyday life scenario [53]. This corresponds to 
our results. Such findings are important because they high-
light the need for longitudinal studies outside of the labor-
atory. 

Note that Banholzer and colleagues [26] drew a more 
positive conclusion from their longitudinal study data, 
which showed a significant relationship between everyday 
mouse usage and self-reported stress. However, although 
the authors suggested that their results indicate that the 
mouse could be used to predict the stress level of computer 
users, they did not specifically test such a prediction in 
their analysis. We bridged this gap by reanalyzing their 
data [54], which failed to provide reliable stress prediction 
on new data (see Supplement 6). Thus, the results of both 
studies might be more similar than their diverging 

TABLE 6 
Mouse Task Machine Learning Result Summary 

 
 
 
 
 
 

 
 
 
Note. MSE = Mean Squared Error, MAE = Mean Absolute Error. 

 

 

 

 

 

N-train N-test # Features R² MSE MAE R² MSE MAE

Valence Dur. Cutoff 8520 2207 22 0.58 219.30 9.57 0.51 254.35 11.40

IQR 2.5 6960 1784 23 0.57 222.37 9.60 0.50 258.39 11.23

IQR 3.5 7573 1955 22 0.57 224.14 9.61 0.50 258.58 11.20

Arousal Dur. Cutoff 8520 2207 22 0.52 277.17 11.49 0.46 317.02 13.33

IQR 2.5 6960 1784 23 0.52 280.11 11.54 0.43 328.00 13.51

IQR 3.5 7573 1955 22 0.51 281.14 11.54 0.44 324.81 13.50

Dataset Characteristics Null Model Full ModelOutcome Dataset
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interpretations suggest. 
From a theoretical perspective, the weak link between 

mouse usage and affect appears inconsistent with studies 
that link affect to motor control [11]. As previously dis-
cussed, one explanation could be the context-dependent 
nature of the relationship between mouse usage and affect 
in real-life settings [32], [55]. Most evidence that links affect 
to motor control is from laboratory studies with specific af-
fect manipulation and isolated contexts. In contrast, we 
captured natural variations in affect in an everyday context 
and did not include contextual variables in our data anal-
ysis. Situational, personal, or temporal factors of using the 
mouse might shape the relationship between mouse usage 
and affect. For example, gender might be an important per-
sonal context variable given research showing gender dif-
ferences in motor activity and emotional processing [56], 
[57]. Habituation to the mouse task or to the affect meas-
urement might be factors in our study (see Figure 13 in 
Supplement 2 & 3 for a glimpse on some exploratory re-
sults on habituation). Other contextual factors include caf-
feine usage and the time of day at which the data were 
gathered, among many others. We largely omitted context 
variables in our data analysis to focus on the core bivariate 
relationship between mouse usage and affect. Incorporat-
ing these variables would have added excessive complex-
ity. Yet, future studies should take these context factors into 
account for a more nuanced understanding of the relation-
ship between mouse usage and affect. 

7.1 Limitations 
When discussing the results of this study, it is important to 
acknowledge that we used self-reported valence and 
arousal as the ground truth of affect. Self-report, while 
widely used as the ground truth in affective computing 
[58], is an imperfect measure of affect as it relies on self-
awareness, subjective judgment, and belief [32]. Moreover, 
since subjective experience is just one component of affect 
[59], self-report, physiological and behavioral measures of 
affect may not necessarily correlate [60]. Future studies 
should therefore carefully select their ground truth meas-
ure of affect and consider multiple options. 

Using EMA allowed to assess mouse usage together 
with affect in a naturalistic setting. However, the study de-
sign also comes with limitations [33, 34]. First, the pro-
vided valence and arousal ratings may not fully represent 
participants' affect if certain emotional states led them to 
skip data collection instances. Similarly, specific affective 
states might occur systematically less likely when the 
measurements take place. Consequently, the missing data 
points may not be randomly distributed. There was an ob-
servable within-person variance in the affect ratings. How-
ever, the overall distribution of valence and arousal were 
skewed towards a more positive and calmer affect. A lack 
of variance limits the possibility of accurate affect predic-
tion. Second, while the field setting of this study is a 
strength in terms of external validity, it sacrifices control 
over participants. in possibly rare cases, multiple individ-
uals might have used the same computer. Third, the study 
design does not permit testing for systematic changes in 
mouse usage in response to specific affective events. 

Instead, this study focuses on evaluating the relationship 
between mouse usage and ambient affect. 

Our exhaustive use of the statistical toolbox to analyze 
the data can be considered a strongpoint, but there is no 
guarantee that we chose the best preprocessing options 
and analysis methods. Moreover, the data analysis fol-
lowed a one-size-fits-all approach with identical model 
specifications for all mouse features, datasets and outcome 
variables. This was done to contain the complexity of this 
study. Future research could tailor model specifications to 
each mouse feature, dataset and outcome variable. For ex-
ample, choosing a more sensitive feature selection proce-
dure than simply removing highly correlated mouse fea-
tures could decrease random noise in the data and improve 
prediction results. 

Lastly, we consider the transformation of the raw mouse 
data into a specific set of mouse usage features a bottleneck 
when searching for a relationship between affect and 
mouse usage. A potentially infinite number of mouse fea-
tures can be calculated from the raw data, thus any trans-
formation into features entails loss of information. In the 
present study, we chose basic mouse features from previ-
ous studies and mouse data processing software. Recent 
studies [61] introduced advanced mouse usage features 
that might be more reliable predictors of emotion, espe-
cially with contextless mouse use. 

The data analysis procedure in the present study un-
derscored the importance of open science principles [62], 
[63], [64]. The data preprocessing and statistical modelling 
demonstrated that data analysis is a ‘garden of forking 
paths [65]. The numerous options and decisions lead to a 
multiple comparison problem, which complicates the dis-
tinction between genuine evidence and supposedly mean-
ingful noise [43]. Lastly, it is important to note that our data 
analysis and our interpretation of the results contain a de-
gree of subjectivity. As the present results align with previ-
ous work of our research group [30], [31], one might be in-
clined to think that we conducted this study with a skepti-
cal narrative in mind and analyzed as well as interpreted 
the results in an overly conservative way. Therefore, we en-
courage readers to carefully review the study material and 
data with a critical mind and draw their own conclusions. 

8 CONCLUSIONS 
The computer mouse offers an intriguing avenue for affect 
sensing in the field of affective computing due to its prac-
ticality. However, our study indicates that a definitive rela-
tionship between mouse usage and affect remains elusive. 
Future research is imperative to either uncover or conclu-
sively dismiss the potential of the computer mouse for af-
fect sensing.  

STUDY MATERIALS AND DATA 
The source code of the Study-App is at 
https://doi.org/10.5281/zenodo.6559229. The data of the 
study are at https://doi.org/10.5281/zenodo.6559329. 
The analysis code of the study is at 
https://doi.org/10.5281/zenodo.10207296. 
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